
LGB BYPASS TERMINAL UNIT

LGB **Bypass Terminal Unit**

The Price LGB low pressure gate bypass terminal unit provides complete zoning flexibility from a single zone source. The LGB complements packaged rooftop and low pressure central station units by providing excellent temperature control and central air distribution with unlimited zoning. The added costs of multi-zone systems can be avoided, and the need for duct-mounted heating coils can be minimized.

LGB with Hot Water Coil

SYSTEM VERSATILITY

LGB terminal units are appropriate for any low pressure, low velocity systems where zoned capacities are required, providing simple and quick installation, and stress-free modification or relocation to adjust interior requirements. The highly versatile LGB is compatible with packaged units in new buildings, or adds zoned control to areas of older buildings.

HOT WATER REHEAT

Price water coils are constructed from high quality materials and are AHRI 410 certified. Designed to optimize heat transfer, water coils are available in high capacity and oversized configurations to meet the requirements of every project. For ease of maintenance, access doors are included with the LGB water coil.

ATTENUATOR

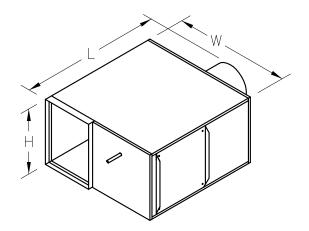
The LGB is available with a discharge attenuator for a cost-effective solution in applications where additional sound attenuation is required. The attenuators are conveniently available with any of the standard Price liner options.

ACCESSORIES

A variety of additional accessories are offered to meet specific job requirements. Details on these accessories are available in the Terminal Units Accessories catalog.

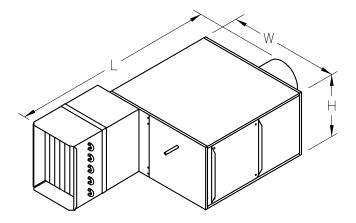
TYPICAL APPLICATIONS

The LGB bypass unit plays a key role in a variable volume, low pressure, bypass system. The LGB maintains a constant volume of conditioned air to the space while bypassing any supply air not required to satisfy space demand. The bypassed air is either directed into the return air plenum, or ducted back to the roof-top unit.

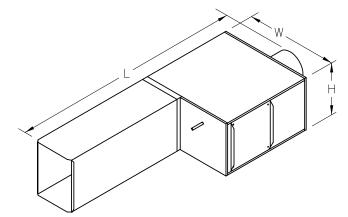

STANDARD DESIGN

- + 22 GA. zinc-coated steel casing
- + Low profile, compact casing
- + Patented high performance sliding gate valve

OPTIONAL FEATURES


- + Hot water reheat
- + Attenuator for sound sensitive applications
- + Round discharge collar
- + Round bypass collar

DIMENSIONAL DATA


LGB Basic Unit

Size	Length (L)	Width (W)	Height (H)
6	- 27 3/4 in. (705 mm)	17 in. (432 mm)	10 in. (254 mm)
8	27 3/4 11. (703 1111)	17 111. (432 11111)	10 III. (234 IIIII)
10	- 38 1/8 in. (968 mm)	25 in. (635 mm)	14 in (256 mm)
12	- 30 1/0 III. (900 IIIIII)	25 111. (055 11111)	14 in. (356 mm)
14	44 3/4 in. (1137 mm)	29 in. (737 mm)	16 in. (406 mm)
16	49 5/8 in. (1260 mm)	33 in. (838 mm)	18 in. (457 mm)

LGB w/ Water Coil

Size	Length (L)	Width (W)	Height (H)
6	37 3/4 in. (959 mm)	17 in. (432 mm)	10 in. (254 mm)
8	37 3/4 11. (939 1111)	17 111. (432 11111)	10 111. (204 11111)
10	40.1/0 in (1000 mm)	0E in (COE mm)	14 in (0EC mm)
12	48 1/8 in. (1222 mm)	25 in. (635 mm)	14 in. (356 mm)
14	54 3/4 in. (1391 mm)	29 in. (737 mm)	16 in. (406 mm)
16	59 5/8 in. (1514 mm)	33 in. (838 mm)	18 in. (457 mm)

LGB w/ Attenuator

Size	ATT 3ft Length (L)	ATT 5ft Length (L)	Width (W)	Height (H)
6	63 1/4 in.	86 1/4 in.	17 in. (432 mm)	10 in. (254 mm)
8	(1607 mm)	(2191 mm)	17 111. (432 11111)	10 11. (234 1111)
10	73 5/8 in.	96 5/8 in.	25 in. (635 mm)	14 in. (356 mm)
12	(1870 mm)	(2454 mm)	25 III. (055 IIIIII)	14 III. (350 IIIIII)
14	80 1/4 in. (2038 mm)	103 1/4 in. (2623 mm)	29 in. (737 mm)	16 in. (406 mm)
16	85 1/8 in. (2162 mm)	108 1/8 in. (2746 mm)	33 in. (838 mm)	18 in. (457 mm)

PERFORMANCE DATA

LGB - Typical Selection Guide

	Airflow		Minim	um ΔPs		Diad		Dedicted
Unit Size	AITHOW	Discharge – Basic	Discharge – 1 Row	Discharge – 2 Row	Bypass	DISCI	harge	Radiated
	cfm	in.w.g.	in.w.g.	in.w.g.	in.w.g.	NC(1)	NC(2)	NC
	100	0.01	0.01	0.02	0.01			
6	200	0.01	0.02	0.05	0.01			
0	300	0.01	0.05	0.10	0.01		30	
	400	0.01	0.07	0.16	0.01		37	
	400	0.01	0.07	0.16	0.09		22	
8	500	0.01	0.11	0.23	0.14		28	
ö	600	0.01	0.15	0.32	0.19		32	
	700	0.01	0.19	0.41	0.26		36	
	500	0.01	0.06	0.12	0.01			
10	700	0.01	0.10	0.22	0.01		22	
10	900	0.01	0.15	0.33	0.01		28	
	1100	0.01	0.22	0.46	0.01		33	
	800	0.01	0.13	0.27	0.05			
12	1000	0.01	0.19	0.40	0.08		21	
12	1300	0.01	0.29	0.61	0.13		29	
	1600	0.01	0.42	0.87	0.19		35	
	1100	0.01	0.13	0.27	0.06			
14	1400	0.01	0.19	0.41	0.09		23	
14	1700	0.01	0.27	0.57	0.14		29	
	2100	0.01	0.39	0.81	0.20		35	
	1600	0.01	0.13	0.27	0.08			
16	2000	0.01	0.19	0.40	0.12		26	
10	2400	0.01	0.25	0.54	0.17		32	
	2800	0.01	0.33	0.69	0.22		37	21

Performance Notes:

- 1. NCs are derived from sound power levels, which are obtained in accordance with AHRI Standard 880-2017 and ASHRAE Standard 130-2016.
- 2. NCs are derived from sound power levels which include duct end corrections per AHRI Standard 880 -2017.
- 3. Blank spaces (--) indicate NCs less than 20.
- 4. ΔPs is the difference in static pressure from inlet to discharge of the unit.
- 5. Listed minimum static pressure discharge is the static pressure loss through the unit with 100% airflow through the discharge outlet.
- 6. Listed minimum static pressure bypass is the static pressure loss through the unit with 100% airflow through the bypass outlet.
- 7. NC values are calculated based on procedures outlined in AHRI Standard 885-2008, "A Procedure for Estimating Occupied Space Sound Levels in the Application of Air Terminals and Air Outlets."

Radiated NC is based on a 5/8 in. mineral fiber tile ceiling per AHRI 885-2008, Appendix E typical attenuation values.

Radiated			Octave	e Band		
Attenuation	2	3	4	5	6	7
Total Deductions	18	19	20	26	31	36

(1) Discharge NC is based on environmental effect, duct lining effect, end reflection, flex duct effect and sound power division per AHRI 885-2008 Appendix E typical attenuation factors.

Discharge	Octave Band							
Attenuation	2	3	4	5	6	7		
< 300 cfm	24	28	39	53	59	40		
300-700 cfm	27	29	40	51	53	39		
> 700 cfm	29	30	41	51	52	39		

LGB - AHRI Certification Rating Points

Unit Size	Rated Airflow	Minimum Operating Pressure Required							,	at 1.5 in.	w.g.			
Size	cfm	in. w.g.	2	3	4	5	6	7	2	3	4	5	6	7
6	400	0.01	50	48	41	39	33	26	57	56	48	44	41	31
8	700	0.01	50	45	41	38	32	26	59	55	50	45	42	34
10	1100	0.01	49	43	40	36	32	26	58	53	46	44	40	29
12	1600	0.01	50	43	41	36	31	26	58	53	48	45	41	32
14	2100	0.01	50	44	43	37	32	27	59	52	46	45	40	30
16	2800	0.01	53	44	47	38	35	30	63	53	48	45	41	32

Performance Notes:

1. cfm, cubic feet per minute.

2. in. w.g., inches of water gauge.

3. Sound power levels expressed in decibels, (dB) re 10⁻¹² watts.

(2) Discharge NC is based on environmental effect and space effect with no attenuation for downstream ductwork. Space effect is based on a room with a volume of 5000 ft³ and the sound source is 5 ft away from the occupant. These calculations are not covered by AHRI 885-2008 Appendix E.

Discharge	(Octave E	Band Mi	id Frequ	Jency, H	Z
Attenuation (NC2)	2	3	4	5	6	7
Total Deductions	9	9	9	9	10	11

PERFORMANCE DATA

LGB - Radiated and Discharge Sound

	Rated					Sound Po	wer Levels	Lw, dB, RE	0 ⁻¹² Watts				
Unit Size	Airflow		Ra	diated Soun	d Octave B	and			D	ischarge Sc	ound Octave	Band	
	cfm	2	3	4	5	6	7	2	3	4	5	6	7
	100												
c	200	38	35	26	23			43	41	31	25		
6	300	45	42	35	33	25	18	52	50	41	36	32	22
	400	50	48	41	39	33	26	57	56	48	44	41	31
	400	38	34	29	24			48	44	36	29	24	17
•	500	43	39	34	30	23		52	48	41	35	31	24
8	600	47	42	38	34	28	22	56	52	46	41	37	30
	700	50	45	41	38	32	26	59	55	50	45	42	34
	500							46	36	26			
10	700	40	34	30	25	21		51	43	35	31	25	
10	900	45	39	36	31	27	21	55	48	41	38	33	22
	1100	49	43	40	36	32	26	58	53	46	44	40	29
	800	36						42	37	30	26		
10	1000	41	33	30	24			47	42	36	32	25	
12	1300	46	39	36	31	25	20	53	48	43	40	34	25
	1600	50	43	41	36	31	26	58	53	48	45	41	32
	1100	38	30	27				44	37	30	27		
14	1400	42	35	33	27	20		50	43	36	34	27	18
14	1700	46	39	38	32	26	21	54	47	41	39	33	24
	2100	50	44	43	37	32	27	59	52	46	45	40	30
	1600	40	32	34	26	21		48	39	34	29	23	
16	2000	45	37	39	31	27	22	54	45	40	36	30	21
16	2400	49	41	44	35	31	27	59	49	44	41	36	27
	2800	53	44	47	38	35	30	63	53	48	45	41	32

Performance Notes:

1. Test data obtained in accordance with AHRI Standard 880-2017 and ASHRAE Standard 130-2016.

3. Application ratings are outside the scope of the AHRI 880 Certification Program.

 Dashes (--) indicate sound power levels below 36-29-26-22-19-17 for each octave band; values below these sound power levels are considered below significance per AHRI 880

2. AHRI certified data is highlighted in blue. All other data are application ratings.

PERFORMANCE DATA

LGB - 1 and 2 Row Hot Water Coil Data – IP Units

Model Size 6 and 8

Rows	Coil gpm	HD Loss			Airflow R	late (cfm)		
Rows	Coll gpm	HD LOSS	100	200	300	400	500	600
	0.5	0.2	5.2	7.4	8.7	9.6	10.3	10.9
	1	0.59	5.8	8.6	10.4	11.8	12.9	13.8
1 Row	2	1.77	6.1	9.3	11.6	13.4	14.8	16
	3	3.37	6.2	9.6	12.1	14	15.6	16.9
	Through the Coil, ∆Ps		0.01	0.02	0.05	0.09	0.13	0.18
	1	0.25	9.2	14	17.2	19.4	21.2	22.6
	2	0.79	9.8	15.8	20	23.3	25.9	28
2 Row	4	2.56	10.2	16.9	21.9	25.8	29.1	32
	6	5.16	10.4	17.3	22.6	26.9	30.5	33.6
	Through th	ie Coil, ∆Ps	0.01	0.05	0.11	0.18	0.27	0.38
						Size 6		

Model Size 10 and 12

Rows	Coil anm	HD Loss			Airflow R	late (cfm)		
Rows	Coil gpm	HD LOSS	400	600	800	1000	1200	1400
	1	0.19	12.9	15	16.5	17.6	18.5	19.2
	2	0.61	15	18	20.2	22	23.4	24.6
1 Row	4	2.02	16.4	20.1	22.9	25.2	27.1	28.7
	6	4.15	17	21	24.1	26.6	28.7	30.5
	Through the Coil, ∆Ps		0.04	0.09	0.15	0.23	0.32	0.42
	1	0.33	22.4	26.3	29	30.9	32.4	33.6
	2	1	26.7	32.7	37.1	40.5	43.3	45.5
2 Row	4	3.16	29.6	37.3	43.2	48	51.9	55.3
	6	6.27	30.7	39.1	45.7	51.2	55.7	59.6
	Through th	ie Coil, ∆Ps	0.09	0.19	0.32	0.48	0.66	0.88
							Size 10	

Model Size 14

Rows	Coil anm	HD Loss			Airflow R	late (cfm)		
nuws	Coil gpm	ID LUSS	1100	1300	1500	1700	1900	2100
	1	0.23	21.2	22.2	23	23.7	24.3	24.8
	2	0.72	26.7	28.4	29.8	31	32	33
1 Row	4	2.36	30.8	33.1	35	36.7	38.2	39.6
	6	4.77	32.6	35.1	37.3	39.2	40.9	42.5
	Through the Coil, ∆Ps		0.15	0.21	0.27	0.33	0.41	0.49
	1	0.41	35.7	37.3	38.5	39.5	40.4	41.2
	2	1.24	47.8	50.8	53.3	55.5	57.4	59
2 Row	4	3.84	57.3	61.8	65.7	69.1	72.1	74.8
	6	7.52	61.3	66.5	71.1	75.2	78.8	82.1
	Through th	ie Coil, ∆Ps	0.32	0.43	0.56	0.7	0.86	1.03

Model Size 16

Rows	Coil gpm	HD Loss	Airflow Rate (cfm)					
			1700	1900	2100	2300	2500	2700
1 Row	1	0.29	28.2	29	29.6	30.2	30.7	31.1
	2	0.9	37.3	38.7	39.9	41	42	42.9
	4	2.85	44.5	46.5	48.3	49.9	51.5	52.8
	6	5.69	47.6	49.9	52	53.9	55.7	57.3
	Through the Coil, ∆Ps		0.17	0.21	0.25	0.29	0.34	0.39
2 Row	1.5	0.43	53.5	55	56.3	57.5	58.5	59.4
	3	1.36	71.7	74.7	77.3	79.7	81.8	83.7
	6	4.45	86.1	90.5	94.5	98.2	101.5	104.6
	9	9.01	92.2	97.4	102.1	106.4	110.4	114.1
	Through the Coil, ∆Ps		0.36	0.44	0.52	0.62	0.72	0.82

Performance Notes:

1. Tabulated values are in MBH (thousands of Btu per hour).

- 2. Minimum air and water values are based on ASHRAE recommendations for coil selection. For selections outside these tabulated air or water flow values, please consult your local Price representative.
- 3. HD (head) loss is in ft of water.

4. ΔPs , is the pressure drop in in. of water across the coil.

5. Values in tables are listed for 0 ft of altitude and no glycol in the system.

6. Reheat coils used in this unit have performance rated and certified in accordance with the current edition of AHRI Standard 410.

Product Improvement is a continuing endeavour at Price. Therefore, specifications are subject to change without notice. Consult your Price Sales Representative for current specifications or more detailed information. Not all products may be available in all geographic areas. All goods described in this document are warranted as described in the Limited Warranty shown at **priceindustries**.com. The complete Price product catalog can be viewed online at **priceindustries**.com.